专任教师队伍
您当前所在位置是: 首页 >> 师资队伍 >> 专任教师队伍 >> 生物技术系 >> 副教授 >> 正文
徐敏
发布时间:2020-05-21      作者:    点击:[]    分享到:

个人简介

徐敏
副教授
西北大学生命科学学院
西安市碑林区太白北路229号,710069
xumin@nwu.edu.cn

Education
学士(BS) 1995 南昌大学 生物学
硕士 (MS) 1998 中科院华南植物所 植物学
博士(Ph.D) 2005 Iowa State University 遗传学

Work Experience
博士后研究员 2005-2007 Iowa State University
博士后研究员 2008-2010 University of California, Berkeley
研究科学家 2010-2012 University of California, Berkeley
副教授 2012至今 西北大学

Research
1)大豆转座子Tgm9的转座机制
DNA转座子是一类可以在染色体上自由移动的DNA元件,广泛地用于植物突变体诱导(mutagenesis)及新突变体筛选。我们从大豆不稳定系T322中克隆出了一个DNA转座子Tgm9,它是目前从大豆中克隆出的唯一有活性的转座子。在T322中,Tgm9插在DFR2基因的内含子中。DFR2编码了一个二氢黄酮还原酶,参与大豆花的花色素合成,所以当Tgm9插在DFR2中时,大豆的花是白色的,而当Tgm9从DFR2中跳出来后,大豆花是紫色的。我们从开紫色花的T322植株中(此类植株中的Tgm9已从DFR2基因中跳出),分离出了大量的新突变体,包括雄性或雌性不育、腐根、 和叶绿素缺失等。这些突变很可能是由于Tgm9重新插入大豆基因组而导致的。对这些新突变的遗传分析显示,Tgm9的新插入位点有一定的偏向性,某些区域常出现新突变。我们的目标是利用分子生物学手段阐明这种偏向性产生的机制。

2)大豆基因的克隆及功能研究
克隆从T322中新产生的突变基因,包括雄性或雌性不育、腐根、 和叶绿素缺失等,利用分子生物学,生化,细胞学手段全面研究及探明这些基因的生物学功能。

3)大豆新种质资源的筛选
利用大豆不稳定系T322和转座子Tgm9分离和克隆大豆的优良性状(如高油,高蛋白,抗病等)。

Publications:
1. Xu M, Cho E, Burch-Smith TM, Zambryski PC (2012) Plasmodesmata formation and cell-to-cell transport are reduced in decreased size exclusion limit 1 during embryogenesis in Arabidopsis. Proc Natl Acad Sci 109:5098-5103.
2. Xu M, Brar HK, Grosic S, Palmer RG, Bhattacharyya MK (2010) Excision of an active CACTA-Like transposable element from DFR2 causes variegated flowers in soybean [Glycine max (L.) Merr.] Genetics 184: 53-63.
3. Xu M, Palmer RG (2006) Genetic analysis of four new mutants at the unstable k2 Mdh1-n y20 chromosomal region in soybean. J Hered 97:423-427.
4. Xu M, Palmer RG (2005) Molecular mapping of k2 Mdh1-n y20, an unstable chromosomal region in soybean [Glycine max (L.) Merr.]. Theor Appl Genet 111:1457-1465.
5. Xu M, Palmer RG (2005) Genetic analysis and molecular mapping of a pale flower allele at the W4 locus in soybean. Genome 48:334-340. (IF2.01)
6. Sumit R, Sahu BB, Xu M, Sandhu D, Bhattacharyya MK (2012) Arabidopsis nonhost resistance gene PSS1 confers immunity against an oomycete and a fungal pathogen but not a bacterial pathogen that cause diseases in soybean. BMC Plant Biology 12:62.
7. Zambryski PC,Xu M, Stonebloom S, Burch-Smith TM(2012)Embryogenesis as a model sysem to dissect the genetic and developmental regulation of cell-to-cell transport via plasmodesmata. In Short and Long Distance Signaling. Series: Advances in Plant Biology, Vol. 3. Kragler F and Hülskamp M (Eds.) pp 45-60.
8. Burch-Smith TM, Stonebloom S, Xu M, Zambryski PC (2011) Plasmodesmata during development: re-examination of the importance of primary, secondary, and branched plasmodesmata structure versus function. Protoplasma 248:61-74.
9. Cervantes-Martinez I, Sandhu D, Xu M, Ortiz-Perez E, Kato KK, Horner HT, Palmer RG (2009) The male sterility locus ms3 is present in a fertility controlling gene cluster in soybean. J Hered 100:565-570.
10. Palmer RG, Xu M (2008) Positioning Three Qualitative Trait Loci on Soybean Molecular Linkage Group E. J Hered 99:674-678.
11. Palmer RG, Zhang L, Huang Z, Xu M (2008) Allelism and molecular mapping of soybean necrotic root mutants. Genome 51:243-250.
12. Cervantes-Martinez I, Xu M, Zhang L, Huang Z, Kato KK, Horner HT, Palmer RG (2007) Molecular mapping of the male-sterility loci ms2, and ms9 in soybean. Crop Sci 47:347-379.